
RPi-DeviceAdapters Documentation

Kyle M. Douglass

Dec 08, 2018

Contents:

1 User Tutorial 3
1.1 Prerequisites . 3
1.2 Installation . 4
1.3 Execute a script . 4
1.4 Next steps . 5

2 Developer Tutorial 7
2.1 Linux . 7

3 Troubleshooting 17
3.1 “Failed to open /dev/video0” when using the Video4Linux device adapter 17

4 Related pages 19

i

ii

RPi-DeviceAdapters Documentation

Micro-Manager device adapters for the Raspberry Pi

Contents: 1

RPi-DeviceAdapters Documentation

2 Contents:

CHAPTER 1

User Tutorial

This tutorial is an introduction to using the RPi-DeviceAdapters Docker-based application. The application is built
around the Micro-Manager Python wrapper and will show you how to run a simple script that communicates with the
Micro-Manager core.

The steps in this tutorial should be executed either in a terminal running directly on a Raspberry Pi or through ssh. It
is assumed that the Raspberry Pi is running a recent version of the Raspbian operating system, though the steps listed
here may work on other Linux-based operating systems as well.

1.1 Prerequisites

Begin by opening a terminal window (also known as a shell).

If you do not already have Docker installed on your Raspberry Pi, you may install it by running the command:

$ curl -sSL https://get.docker.com | sh

Follow the steps described in the installation script. After the installation has finished, you may optionally add your
user to the Docker group so that you do not need to enter sudo before running Docker commands.

$ sudo groupadd docker
$ sudo usermod -aG docker $USER

Log out and log back in for the changes to take effect.

You will also likely want to grab the venv package for Python from the Raspbian package manager.

$ sudo apt-get install python3-venv

Create a new virtual environment for the application to isolate it from the rest of your system:

$ python3 -m venv ~/venvs/mm

3

https://github.com/kmdouglass/RPi-DeviceAdapters
https://micro-manager.org/
https://www.raspbian.org/
https://docs.docker.com/install/linux/linux-postinstall/#manage-docker-as-a-non-root-user

RPi-DeviceAdapters Documentation

~ corresponds to your home folder; you may instead replace ~/venvs/mm with any directory that you wish. Next,
activate the virtual environment:

$ source ~/venvs/mm/bin/activate

You should see the name of the venv (in this case, mm) at the start of the command line. Whenever you want to stop
working on the project, type deactivate. To reactivate the venv, simply rerun the command above.

1.2 Installation

To install RPi-DeviceAdapters into the venv, run the following command:

$ pip install tacpho.adapters

It will be assumed throughout the rest of this tutorial that you have added your user to the Docker group. (See the
previous section for details.)

Next, download the latest Docker image of the application:

$ mm.py pull

This command may take several minutes before it completes as it downloads the application from DockerHub. mm.py
is a convenience script for interacting with RPi-DeviceAdapters’ Docker resources. To see its help message, type

$ mm.py --help

1.3 Execute a script

Open your text editor and enter the following code:

1 import MMCorePy
2

3 mmc = MMCorePy.CMMCore()
4 mmc.loadDevice('tutorial', 'RPiTutorial', 'RPiTutorial')
5 mmc.initializeAllDevices()
6

7 print(mmc.getProperty('tutorial', 'Switch On/Off'))
8

9 mmc.setProperty('tutorial', 'Switch On/Off', 'Off')
10 print(mmc.getProperty('tutorial', 'Switch On/Off'))

Save the text to a file named tutorial.py. This is just a short Python script that uses the Micro-Manager Python API to
load the tutorial device adapter. It will report the value of a “switch”, flip its value, and then print the new value.

To run the tutorial, enter the following command from the same folder that contains the script you just saved (be sure
that the virtual environment in which you installed tacpho.adapters is active).

$ mm.py run tutorial.py

You should see the output from the script appear in your console.

4 Chapter 1. User Tutorial

https://pypi.org/project/tacpho.adapters/

RPi-DeviceAdapters Documentation

1.4 Next steps

Example scripts for other device adapters may be found in the examples folder of the RPi-DeviceAdapters root di-
rectory. Check out the Micro-Manager documentation on its Python interface for more information about interacting
with the Micro-Manager core.

Do not forget to update the RPi-DeviceAdapters application when new versions and device adapters become available
by running mm.py pull.

1.4. Next steps 5

https://github.com/kmdouglass/RPi-DeviceAdapters/tree/master/examples
https://micro-manager.org/wiki/Using_the_Micro-Manager_python_library

RPi-DeviceAdapters Documentation

6 Chapter 1. User Tutorial

CHAPTER 2

Developer Tutorial

This tutorial will demonstrate how to use RPi-DeviceAdapters to write, build, and deploy a simple Micro-Manager
device adapter for the Raspberry Pi on a laptop or desktop. RPi-DeviceAdapters provides these capabilities to make
development easier; you do not need to develop new device adapters directly on the Raspberry Pi.

2.1 Linux

2.1.1 Requirements

• Git

• Subversion (for the Micro-Manager dependencies)

• Docker

• Docker Compose

• Make

• QEMU

QEMU installation

The QEMU emulator is used to emulate a ARM processor architecture on a x86_64 system. It is setup as follows:

On Ubuntu, install the emulation packages with the commands:

$ sudo apt update
$ sudo install qemu qemu-user-static qemu-user binfmt-support

If you are not using Ubuntu, search for and install these packages in your system’s respective package manager. Next,
register QEMU in the build agent:

7

https://github.com/kmdouglass/RPi-DeviceAdapters
https://micro-manager.org/
https://git-scm.com/downloads
https://subversion.apache.org/
https://docs.docker.com/install/
https://docs.docker.com/compose/
https://www.gnu.org/software/make/
https://www.qemu.org/

RPi-DeviceAdapters Documentation

$ docker run --rm --privileged multiarch/qemu-user-static:register --reset

2.1.2 Setup

Begin by opening a shell, cloning the RPi-DeviceAdapters repository, and navigating inside the root directory of the
cloned repository.

$ # For HTTPS, use https://github.com/kmdouglass/RPi-DeviceAdapters.git
$ git clone git@github.com:kmdouglass/RPi-DeviceAdapters.git
$ cd RPi-DeviceAdapters

Inside you will find a folder named ci (for continuous integration). This folder contains all the tools necessary for
developing a new device adapter.

Next, we use the ci/prebuild.sh script to checkout the Micro-Manager source code and 3rdpartypublic dependen-
cies. These will be placed into a directory named /opt/rpi-micromanager. It is required by the build tool’s docker-
compose.yml file to place the development files here; let’s first create it and set its ownership:

$ sudo mkdir -p /opt/rpi-micromanager
$ sudo chown $USER:$USER /opt/rpi-micromanager

If you do not want to place the source code in this directory, then you can either:

1. create a symlink at /opt/rpi-micromanager that points to your alternative directory, or

2. modify docker-compose.yml to point towards your alternative directory.

The build container uses ccache to decrease the build time. ccache requires that there be a directory in your $HOME
folder named .ccache to store the cached artifacts; it will automatically be created for you if it does not already exist
when you run the prebuild script.

Let’s run the prebuild script now:

$ ci/prebuild.sh /opt/rpi-micromanager

This step usually takes a few minutes due to the large size of the 3rdpartypublic repository. After it has completed,
you should find the following inside /opt/rpi-micromanager:

$ tree -L 1 /opt/rpi-micromanager
/opt/rpi-micromanager

3rdpartypublic
micro-manager

2.1.3 Writing device adapters

Writing a general purpose Micro-Manager device adapter is outside the scope of this tutorial; help may be found on the
Micro-Manager website and the mailing list. Here we discuss how to build a simple device adapter for the Raspberry
Pi. The device adapter will have a single property that can be switched between two states: on and off.

Navigate to the device adapters folder inside the RPi-DeviceAdapters folder.

$ cd src/DeviceAdapters

For the sake of this tutorial, delete the folder named RPiTutorial. We will recreate it and its contents next.

8 Chapter 2. Developer Tutorial

https://github.com/kmdouglass/RPi-DeviceAdapters/blob/master/ci/prebuild.sh
https://github.com/kmdouglass/RPi-DeviceAdapters/blob/master/ci/build/docker-compose.yml
https://github.com/kmdouglass/RPi-DeviceAdapters/blob/master/ci/build/docker-compose.yml
https://github.com/kmdouglass/RPi-DeviceAdapters/blob/master/ci/build/docker-compose.yml
https://ccache.samba.org/
https://micro-manager.org/wiki/Building_Micro-Manager_Device_Adapters
https://micro-manager.org/wiki/Micro-Manager%20Community

RPi-DeviceAdapters Documentation

$ rm -rf RPiTutorial

Recreate the (empty) folder
$ mkdir RPiTutorial

Next, create three empty files named RPiTutorial.h, RPiTutorial.cpp, and Makefile.am inside this folder.

$ cd RPiTutorial
$ touch RPiTutorial.h RPiTutorial.cpp Makefile.am

With your text editor, open the file named RPiTutorial.h, and enter the following code:

1 /**
2 * Kyle M. Douglass, 2018
3 * kyle.m.douglass@gmail.com
4 *
5 * Tutorial Micro-Manager device adapter for the Raspberry Pi.
6 */
7

8 #ifndef _RASPBERRYPI_H_
9 #define _RASPBERRYPI_H_

10

11 #include "DeviceBase.h"
12

13 class RPiTutorial : public CGenericBase<RPiTutorial>
14 {
15 public:
16 RPiTutorial();
17 ~RPiTutorial();
18

19 // MMDevice API
20 int Initialize();
21 int Shutdown();
22

23 void GetName(char* name) const;
24 bool Busy() {return false;};
25

26 // Settable Properties
27 // -------------------
28 int OnSwitchOnOff(MM::PropertyBase* pProp, MM::ActionType eAct);
29

30 private:
31 bool initialized_;
32 bool switch_;
33 };
34

35 #endif //_RASPBERRYPI_H_

The most important method defined in this header file is OnSwitchOnOff(MM::PropertyBase* pProp, MM::ActionType
eAct), which is the callback method that is called whenever the switch is flipped. The internal state of the switch is
stored in the private variable switch_. All other methods are required by the CGenericBase API.

Now let’s implement the switch. Open the file RPiTutorial.cpp and enter the following lines:

1 /**
2 * Kyle M. Douglass, 2018
3 * kyle.m.douglass@gmail.com

(continues on next page)

2.1. Linux 9

RPi-DeviceAdapters Documentation

(continued from previous page)

4 *
5 * Tutorial Micro-Manager device adapter for the Raspberry Pi.
6 */
7

8 #include "RPiTutorial.h"
9 #include "ModuleInterface.h"

10

11 using namespace std;
12

13 const char* g_DeviceName = "RPiTutorial";
14

15 //
16 // Exported MMDevice API
17 //
18

19 /**
20 * List all supported hardware devices here
21 */
22 MODULE_API void InitializeModuleData()
23 {
24 RegisterDevice(
25 g_DeviceName,
26 MM::GenericDevice,
27 "Control of the Raspberry Pi GPIO pins."
28);
29 }
30

31 MODULE_API MM::Device* CreateDevice(const char* deviceName)
32 {
33 if (deviceName == 0)
34 return 0;
35

36 // decide which device class to create based on the deviceName parameter
37 if (strcmp(deviceName, g_DeviceName) == 0)
38 {
39 // create the test device
40 return new RPiTutorial();
41 }
42 // ...supplied name not recognized
43 return 0;
44 }
45

46 MODULE_API void DeleteDevice(MM::Device* pDevice)
47 {
48 delete pDevice;
49 }
50

51 //
52 // RPiTutorial implementation
53 // ~~~~~~~~~~~~~~~~~~~~~~~~~~
54

55 /**
56 * RPiTutorial constructor.
57 *
58 * Setup default all variables and create device properties required to exist before
59 * intialization. In this case, no such properties were required. All properties will

→˓be created in
(continues on next page)

10 Chapter 2. Developer Tutorial

RPi-DeviceAdapters Documentation

(continued from previous page)

60 * the Initialize() method.
61 *
62 * As a general guideline Micro-Manager devices do not access hardware in the the

→˓constructor. We
63 * should do as little as possible in the constructor and perform most of the

→˓initialization in the
64 * Initialize() method.
65 */
66 RPiTutorial::RPiTutorial() :
67 initialized_ (false),
68 switch_ (true)
69 {
70 // call the base class method to set-up default error codes/messages
71 InitializeDefaultErrorMessages();
72 }
73

74 /**
75 * RPiTutorial destructor.
76 *
77 * If this device used as intended within the Micro-Manager system, Shutdown() will

→˓be always
78 * called before the destructor. But in any case we need to make sure that all

→˓resources are
79 * properly released even if Shutdown() was not called.
80 */
81 RPiTutorial::~RPiTutorial()
82 {
83 if (initialized_)
84 Shutdown();
85 }
86

87 /**
88 * Obtains device name. Required by the MM::Device API.
89 */
90 void RPiTutorial::GetName(char* name) const
91 {
92 // We just return the name we use for referring to this device adapter.
93 CDeviceUtils::CopyLimitedString(name, g_DeviceName);
94 }
95

96 /**
97 * Intializes the hardware.
98 *
99 * Typically we access and initialize hardware at this point. Device properties are

→˓typically
100 * created here as well. Required by the MM::Device API.
101 */
102 int RPiTutorial::Initialize()
103 {
104 if (initialized_)
105 return DEVICE_OK;
106

107 // set property list
108 // -----------------
109 // Name
110 int ret = CreateStringProperty(MM::g_Keyword_Name, "RPiTutorial device adapter",

→˓true);
(continues on next page)

2.1. Linux 11

RPi-DeviceAdapters Documentation

(continued from previous page)

111 assert(ret == DEVICE_OK);
112

113 // Description property
114 ret = CreateStringProperty(MM::g_Keyword_Description, "A test device adapter",

→˓true);
115 assert(ret == DEVICE_OK);
116

117 // On/Off switch
118 CPropertyAction* pAct = new CPropertyAction (this, &RPiTutorial::OnSwitchOnOff);
119 CreateProperty("Switch On/Off", "Off", MM::String, false, pAct);
120 std::vector<std::string> commands;
121 commands.push_back("Off");
122 commands.push_back("On");
123 SetAllowedValues("Switch On/Off", commands);
124

125 // synchronize all properties
126 // --------------------------
127 ret = UpdateStatus();
128 if (ret != DEVICE_OK)
129 return ret;
130

131 initialized_ = true;
132 return DEVICE_OK;
133 }
134

135 /**
136 * Shuts down (unloads) the device.
137 *
138 * Ideally this method will completely unload the device and release
139 * all resources. Shutdown() may be called multiple times in a row.
140 * Required by the MM::Device API.
141 */
142 int RPiTutorial::Shutdown()
143 {
144 initialized_ = false;
145 return DEVICE_OK;
146 }
147

148 /**
149 * Callback function for on/off switch.
150 */
151 int RPiTutorial::OnSwitchOnOff(MM::PropertyBase* pProp, MM::ActionType eAct)
152 {
153 std::string state;
154 if (eAct == MM::BeforeGet) {
155 if (switch_) { pProp->Set("On"); }
156 else { pProp->Set("Off"); }
157 } else if (eAct == MM::AfterSet) {
158 pProp->Get(state);
159 if (state == "Off") { switch_ = false; }
160 else if (state == "On") { switch_ = true; }
161 else { return DEVICE_ERR; }
162 }
163

164 return DEVICE_OK;
165 }

12 Chapter 2. Developer Tutorial

RPi-DeviceAdapters Documentation

Most of this code is boilerplate, i.e. code that is required by the MMDevice API but that does not directly affect the
functionality that the user sees. The property that implements the On/Off switch is created here:

1 CPropertyAction* pAct = new CPropertyAction (this, &RPiTutorial::OnSwitchOnOff);
2 CreateProperty("Switch On/Off", "Off", MM::String, false, pAct);
3 std::vector<std::string> commands;
4 commands.push_back("Off");
5 commands.push_back("On");
6 SetAllowedValues("Switch On/Off", commands);

Its switching behavior is defined here:

1 /**
2 * Callback function for on/off switch.
3 */
4 int RPiTutorial::OnSwitchOnOff(MM::PropertyBase* pProp, MM::ActionType eAct)
5 {
6 std::string state;
7 if (eAct == MM::BeforeGet) {
8 if (switch_) { pProp->Set("On"); }
9 else { pProp->Set("Off"); }

10 } else if (eAct == MM::AfterSet) {
11 pProp->Get(state);
12 if (state == "Off") { switch_ = false; }
13 else if (state == "On") { switch_ = true; }
14 else { return DEVICE_ERR; }
15 }
16

17 return DEVICE_OK;
18 }

Now, open Makefile.am and add the following lines:

1 AM_CXXFLAGS = $(MMDEVAPI_CXXFLAGS)
2 deviceadapter_LTLIBRARIES = libmmgr_dal_RPiTutorial.la
3 libmmgr_dal_RPiTutorial_la_SOURCES = RPiTutorial.cpp RPiTutorial.h \
4 ../../MMDevice/MMDevice.h ../../MMDevice/DeviceBase.h
5 libmmgr_dal_RPiTutorial_la_LIBADD = $(MMDEVAPI_LIBADD)
6 libmmgr_dal_RPiTutorial_la_LDFLAGS = $(MMDEVAPI_LDFLAGS)

This file instructs Autotools how to create the Makefile when the code is compiled.

2.1.4 Building the libraries

To build the Micro-Manager core and device adapter that we just wrote, we first need to add RPiTutorial to the list of
device adapters in src/DeviceAdapters/Makefile.am and src/DeviceAdapters/configure.ac. Here is what Makefile.am
looks like:

1

2 AUTOMAKE_OPTIONS = foreign
3 ACLOCAL_AMFLAGS = -I ../m4
4

5 # Please keep these ASCII-lexically sorted (pass through sort(1)).
6 SUBDIRS = \
7 DemoCamera \
8 RPiGPIO \

(continues on next page)

2.1. Linux 13

RPi-DeviceAdapters Documentation

(continued from previous page)

9 RPiTutorial \
10 Video4Linux

And here is an excerpt of the relevant part of configure.ac that should be modified. In both files, the list of De-
viceAdapters should be in alphabetical order.

1 # Please keep the list of device adapter directories in ASCII-lexical order,
2 # with an indent of 3 spaces (no tabs)! (Just pass through sort(1).)
3 # This is the list of subdirectories containing a Makefile.am.
4 m4_define([device_adapter_dirs], [m4_strip([
5 DemoCamera
6 RPiGPIO
7 RPiTutorial
8 Video4Linux

Now that we have written our device adapter and updated the Autotools files, we need to merge our code with the
Micro-Manager source code. This is easily performed with the ci/merge.sh utility script:

$ ci/merge.sh /opt/rpi-micromanager

Each time you change the code you can run this script and it will copy only the changed files into the appropriate
directories of /opt/rpi-micromanager/ (or whatever directory you pass as an argument).

The final step is to compile Micro-Manager and the libraries for our device adapter. If this is the first time you are
doing this, it may take a long time (around half an hour). Subsequent compilations should be three or four times faster
because the compiler cache will have been built.

To begin compilation, change into the ci/build directory.

$ cd ../../../ci/build

The build will be performed inside a Docker container that contains the build dependencies and QEMU, the emulator
for the ARM processor architecture. Having a Docker image that is already configured for compilation ensures that
you will have the proper dependencies without having to manually configure your environment. To download the
Docker image from Dockerhub, run the following command.

$ docker-compose pull

Finally, begin the compilation by running

$ docker-compose up

If all goes well, then you will find the build artifacts in /opt/rpi-micromanager/build at the end of the compilation:

$ tree /opt/rpi-micromanager/build
/opt/rpi-micromanager/build/

lib
micro-manager

libmmgr_dal_DemoCamera.la
libmmgr_dal_DemoCamera.so.0
libmmgr_dal_RPiGPIO.la
libmmgr_dal_RPiGPIO.so.0
libmmgr_dal_RPiTutorial.la
libmmgr_dal_RPiTutorial.so.0
_MMCorePy.la
MMCorePy.py

(continues on next page)

14 Chapter 2. Developer Tutorial

https://github.com/kmdouglass/RPi-DeviceAdapters/blob/master/ci/merge.sh
https://www.qemu.org/

RPi-DeviceAdapters Documentation

(continued from previous page)

_MMCorePy.so
share

micro-manager
MMConfig_demo.cfg

(The contents of your build directory may be different depending on what device adapters were built.) The libraries
for the RPiTutorial device adapter are the files libmmgr_dal_RPiTutorial.la and libmmgr_dal_RPiTutorial.so.0. In
addition, RPi-DeviceAdapters builds the Micro-Manager Python wrapper. The relevant files for the wrapper are _MM-
CorePy.* and MMCorePy.py. The Python wrapper may be imported into a Python script to gain access to the methods
in the Micro-Manager core.

Whenever you make changes to your code during development, you will need to run the ci/merge.sh script to copy the
changes into /opt/rpi-micromanager before recompiling. It would also be good to occassionally pull any updates to
the build container by running docker-compose pull, but this should rarely be necessary.

2.1.5 Deploying the app

At this point, you may transfer the compiled librariers to your Raspberry Pi for use. However, manual transfers of
the libraries can be cumbersome. Furthermore, it can be diffcult for others to benefit from your work if they have to
recompile your source code on their own. For these reasons, RPi-DeviceAdapters provides tools to create a Docker-
based app that can easily be uploaded and downloaded from Docker Hub for on-demand use.

To create the app, first navigate to the ci/app folder.

$ cd ../app

Next, use the Makefile to build the Docker image that contains the app.

$ make build

While creating the image, the Makefile will copy the contents of /opt/rpi-micromanager/build into the image and
configure the Python environment. (You will need to edit the Makefile and change the location of the build artifacts if
you are using a directory other than /opt/rpi-micromanager.)

Let’s verify that the image has been built. Though your output will differ slightly, you should see something similar to
the output found below.

$ docker image ls
REPOSITORY TAG
→˓IMAGE ID CREATED SIZE
kmdouglass/rpi-micromanager build
→˓24d67a46e281 5 days ago 745MB

At this point, you will need to create a Docker Hub account if you do not already have one and login via the command
line.

$ docker login

The final step before uploading the image is to retag it so that it points to your Docker Hub repository and not the
default one.

$ docker tag kmdouglass/rpi-micromanager USERNAME/rpi-micromanager

Here, USERNAME is your Docker Hub username. Finally, we can upload the image:

2.1. Linux 15

https://hub.docker.com/
https://hub.docker.com/

RPi-DeviceAdapters Documentation

$ docker push USERNAME/rpi-micromanager

and, from the Raspberry Pi, download the image:

$ docker pull USERNAME/rpi-micromanager

You will need Docker installed on your Raspberry Pi to pull the image.

16 Chapter 2. Developer Tutorial

CHAPTER 3

Troubleshooting

3.1 “Failed to open /dev/video0” when using the Video4Linux device
adapter

If you do not see a device file named video0 inside the /dev folder of your Raspberry Pi, then you may need to load the
bcm2835-v4l2 kernel module.

$ sudo rpi-update

Restart the Pi, then run the following command
$ sudo modprobe bcm2835-v4l2

Verify that video0 exists by looking for the /dev/video0 output from the following command. (No output means that
the file is not present.)

$ ls /dev | grep video

To ensure that the bcm2835-v4l2 kernel module is loaded at startup, add it to modprobe.d.

17

https://linux.die.net/man/5/modprobe.d

RPi-DeviceAdapters Documentation

18 Chapter 3. Troubleshooting

CHAPTER 4

Related pages

• Zulip Chat: Help and discussion about the project

• RPi-DeviceAdapters : Main project page and source code

• rpi-micromanager : The project’s Docker images

• Micro-Manager : Open-source microscopy software

19

https://tacpho.zulipchat.com
https://github.com/kmdouglass/RPi-DeviceAdapters
https://hub.docker.com/r/kmdouglass/rpi-micromanager/
https://micro-manager.org/

	User Tutorial
	Prerequisites
	Installation
	Execute a script
	Next steps

	Developer Tutorial
	Linux

	Troubleshooting
	“Failed to open /dev/video0” when using the Video4Linux device adapter

	Related pages

